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Introduction

The paper[4] investigates the screening effect caused in plasma for thermonuclear fusion
reactions occurring in stars. Since plasma with the exact physical conditions of a core of
a star cannot be replicated in the laboratory, they investigate the plasma that could be
generated in a lab using high intensity lasers. The screening effect results obtained here
can at least give a glimpse of what might happen in the dense core of stars.

They go about this by proposing an experiment that can be performed in the ELI-NP
laboratory soon to be open for experimental use in Romania. The rate of the following
fusion reaction was being studied in the proposed experiment.

13C + 4He −−→ 16O + 1n

The experiment starts with the expulsion of 13C ions from the first solid target via the
TNSA mechanism. These ions then meet the gas He target or the plasma He target
(produced by a second laser beam) and the reaction products are detected on the other
side.

Figure 1: Schematic of the proposed experiment

The results obtained in the paper can be divided into 3 parts:

• Number of 13C ions expelled from the rear side of the target by TNSA mechanism
per unit energy as a function of energy and how it changes with change in laser
characteristics that produced it.

• Rate of fusion reaction as a function of temperature and how it is affected by altering
the density of helium and the charge number of the carbon ion.

• Number of neutron events per laser pulse per unit energy as a function of energy and
how it is affected by temperature.
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The results are numerical simulations based on the TNSA scheme in laser-target in-
teraction which uses the fluid model of plasma expansion into vacuum proposed by Mora
(2003).

Results from the Mora (2003) and Fuchs et al. (2006)
papers

Mora proposed a one dimensional, isothermal fluid model to to study the charge separation
effects in collision-less plasma. Based on the results obtained from the model ,we can
determine the maximum ion energy and the ion energy spectrum. Here are the relevant
formulae from the two papers and the references therein. A description of the variables
are given in a table separately. SI units with kB = 1 are adopted.

The number of accelerated ions per unit energy is given by:

dN

dE
=
ni0cstaccSsheath√

2EE0
exp(−

√
2E/E0) (1)

ni0 = ne0/Z i (quasi-neutral plasma); ne0 = N e/(cτ laserSsheath); cs =
√
Z iT e/mi

T e = mec
2[
√

1 + Iλ2µm/1.37× 1018 − 1] (2)

tacc = 1.3τ laser; E0 = ZiTe

N e = f absElaser/T e (3)

where,
f abs = 1.2× 10−15I0.74 (4)

with a maximum at 0.5

Ssheath = π(r0 + dttanθ)
2 (5)

For a Gaussian pulse, r0 = 1.18w/2

I =
P

πw2/2

and,
Elaser = Pτ laser/0.94
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The maximum cut off energy that can be gained by accelerating ions is:

Emax = 2E0[ln(tp +
√
tp2 + 1)]2 (6)

tp = ωpitacc/
√

2Exp ;

ωpi =
√
ne0Z ie2/(miε0)

Finally, the electric field at the ion front as predicted by Mora is:

Efront,0 =
√

2/Exp(ne0T e/ε0)
1/2 (7)

This is useful to determine the nature of the carbon ion expelled from the rear surface
of the target.

Table 1: Description of Variables

Variable Description
N Number of carbon 13 ions expelled from the target rear
E Energy of the carbon 13 ions
ni0 Initial density of ions (unperturbed plasma)
ne0 Initial density of electrons (unperturbed plasma)
Zi Ion charge state
cs Ion sound speed
mi Ion mass (in SI units)
me Mass of an electron in SI units
Ne Total number of electrons accelerated to the target
c Velocity of light
tacc Effective acceleration time (1.3τ laser)
Ssheath Surface over which the electrons spread on the target
r0 Initial radius of the zone over which the electrons are accelerated at the target surface
w FWHM of the Gaussian laser pulse
P Peak power of the laser
I Peak intensity of the laser (W/cm2)
τ laser Laser pulse duration
ωpi Ion plasma frequency
tp Normalised acceleration time
e Unit charge
ε0 Permittivity in free space
E0 ZiTe

Te Electron temperature
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Table 1 continued from previous page
λµm Laser wavelength in micro meters (0.8)
fabs Fraction of laser light absorbed into plasma as fast electrons
Elaser Laser energy
Efront,0 Initial electric field at the ion front
Exp exp(1)
dt Thickness of the target
θ Half angle divergence of hot electrons inside the target (25 degrees)

Summary of Results

Two different laser configurations were used:

1. I = 1020 W/cm2, P = 10 PW and τ laser = 25 fs

2. I = 1019 W/cm2, P = 1 PW and τ laser = 250 fs

The Efront,0 values for each of the cases is: 1.39× 1013 V/m and 2.30× 1012 V/m respec-
tively. Comparing these values with the threshold electric field for the creation of n+
charge state of carbon (Hegelich et al. 2002), we can see that, in the first case, carbon will
have +6 ionic state while in the second case, it will not cross +4. Zi for each of the cases
was changed accordingly.

Table 2: Threshold electric field for the creation of n+ ionic state of carbon (Hegelich et
al. (2002))

n Threshold Electric Field (V/m)
1 2.2× 1010

2 5.2× 1010

3 1.3× 1011

4 1.8× 1011

5 5.3× 1012

6 7.0× 1012

The empirical fraction fabs crosses its threshold value of 0.5 in the first case, hence its
value is reset to the threshold value.

The maximum cut-off energy that can be gained by the accelerating ions are (Emax):
22.19 MeV and 14.80 MeV respectively.

A graph of the number of 13C ions accelerated per unit energy as a function of energy
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was plotted for the two cases (mysim.py).

Figure 2: Number of TNSA accelerated carbon ions per unit energy. Thickness of the
target is 5 µm

Why the new model?

The model described in Mora (2003) paper, is an isothermal, semi-infinite, one dimensional
plasma model. The model was proposed to study the charge separation effects in a collision-
less plasma. While the model is able to give good estimates on the number of ions emitted
per unit energy from a target rear surface, it assumes that the electron temperature remains
constant. This assumption is plausible during a laser pulse, it is violated for time scales
beyond that, since electrons progressively lose their energy to the ions in the plasma.
Another drawback of the old model is that it does not describe charge separation effect and
the structure of the ion front which is crucial in determining the energy of the accelerated
ions.
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The New Model

The new adiabatic model[2] does not assume the temperature of the electrons to be constant
and takes into account the cooling of electrons by transfer of energy to the ions. The
model deals with the collision-less expansion into vacuum of a thin foil of initial width L,
as opposed to the semi-infinite model before.

At t=0, the ions are cold and at rest with an initial density ni0 = ne0/Zi within a
one dimensional box of length L (centered at the origin). The equations of the model
are the same as the model before (Boltzmann equation for ne, Poisson equation for the
potential, equations of continuity and motion for ni and vi) except the boundary conditions
are different for the left part of the box, E(x=0)=0 and vi(x=0)=0 for all time t. Also
the electron temperature is a function of time governed by the equation of conservation of
energy:

dU e/dt = −dU ions/dt− dUfield/dt (8)

Uions is the kinetic energy of the ions, Ufield is the electrostatic energy of the electric field
and Ue is the thermal energy of electrons (all defined per unit surface).

U e = g(θ)N eT e (9)

where Ne=ne0L is the total number of electrons and g(θ) is a function of θ = Te/mec2.
We can think of the function g like a fractional co-efficient which is the ratio between the
actual thermal energy of the electrons and the average thermal energy of the electrons.
g=1/2 in the classical limit (θ = 0) and g=1 in the ultra-relativistic limit (θ = ∞).

Energy of the electron can also be calculated by the work done on the electron fluid by
the electric field:

dU e/dt = −e
∫ ∞
−∞

Enevedx = −T e

∫ ∞
−∞

ne∂ve/∂xdx = e

∫ ∞
−∞

Φ∂ne/∂tdx (10)

The characteristic expansion time of the foil is taken to be tL = L/2cs0 which is the time
taken by the electrons to reach the center of the foil if their temperature is held constant.
For t � tL the expansion is similar to the old model. For t close to tL, electron cooling
progressively occurs. Finally for t � tL the electron cooling process is fully effective and
the velocity becomes progressively zero, with v(x,t) ' x/t. Also, the density profile ne(x,t)
is inversely proportional to time.
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Computation

Continuity equations for ion density and ion velocity,

∂ni
∂t

+ vi
∂ni
∂x

= −ni
∂vi
∂x

(11)

∂vi
∂t

+ vi
∂vi
∂x

= −Ze
mi

∂Φ

∂x
(12)

The Poisson equation,

ε0
∂2Φ

∂x2
= e(ne − Zni) (13)

Electron density relation,

ne = ne0exp(
eΦ

Te
) (14)

and the differential equation for electron temperature,

dUe
dt

= ne0Lg(θ)
dTe
dt

= e

∫ ∞
−∞

Φ∂ne/∂tdx (15)

With initial conditions: Φ(x = 0, t) = 0, vi(x = 0, t) = 0, ni(x, 0) = ne0/Z if |x| < L,
otherwise ni(x, 0) = 0, Te(t = 0) = Te0, vi(−L, t) = 0 and E(−L, t) = 0 where E =

−∂Φ/∂x For the continuity equations, we can make use of the self similar variable[3]:
ξ = x/cs0t and modify the equations into ordinary differential equations that can be solved
easier.

(ui − ξ)
dlnni
dξ

= −dui
dξ

(16)

(ui − ξ)
dui
dξ

= −dφ
dξ

(17)

where ui = vi/cs0 and φ = eΦ/Te The self similar solution for φ is: φ = −1− ξ. The solu-
tions of these equations (backup_nsssim.py) has been plotted in figures 3 and 4 (Electron
temperature held constant):

A way to solve these equations (11-15) is that we can use the initial self-similar assump-
tion for the potential and plug it in the continuity equations (eqns: 11 and 12) to obtain the
ion density and velocity, then use the same potential to find the electron density (eqn:14)
with electron temperature being Te0. Then use the electron and ion density to solve the
Poisson equation (eqn:13) to obtain the new potential and use the new potential to find out
the electron temperature from eqn:15. Plug the new potential into the continuity equation
and the cycle goes on until a stable, converging solution is obtained.

I tried this with my code (3nsssim.py) but I got stability issues with the result. There
was a run away effect after 10 steps or so. I am not sure if the problem lies with the
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Figure 3: Ion density as a function of ξ for a proton at ωpit = 50, L = 20λ0, Te0 = 1 MeV

Figure 4: Velocity of ion as a function of ξ for a proton at ωpit = 50, L = 20λ0, Te0 = 1

MeV

integration in the differential equation involving electron temperature or if the equations
are just not converging. I am yet to obtain an acceptable result. I have also tried using
mathematica but in vain.
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Remarks

The 2003 Mora paper talks about using a Lagrangian code to solve the 5 equations in ques-
tion and the method used is apparently the same as the one used in True,Albritton,Williams
(1979) paper. In that paper, a three fluid model is used (ions, hot and cold electrons). A
look into the paper did not give me a satisfactory computational algorithm to solve the
equations. If there was more information available on the Lagrangian code, then replicat-
ing solution will be a lot easier. Otherwise, converging method looks to be the only way
to go.
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