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Stern-Gerlach Experiment

An experiment proving quantized nature of intrinsic angular momentum

A beam of silver atoms passing through inhomogeneous transverse
magnetic field
For spin half particles, only two values of intrinsic angular momentum
values are possible ±h̄/2
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Stern-Gerlach Experiment

Figure: Classical expectation versus quantum result of the SG experiment
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Weak Measurement?

Strong measurement - Change in the state of the system and the
measuring device
Weak measurement - ”Not much” change in the state
What does that mean in SG?
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Weak Measurement in SG

Can be achieved by:

Weak inhomogeneous magnetic field

Keeping the screen close to the measuring apparatus

The final state of the system after measurement is still a mixture of both
the spins.
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Post Selection

Figure: Weak measurement followed by strong measurement and post selection.
Source: Duck, Sudarshan, Phys.Rev.D (1989)
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Post Selection

Immediately after the weak measurement in one direction, we make a
strong measurement in the direction perpendicular to both the direction of
propagation and the direction weak measurement
Then we select one of the outputs hence selecting a definite final state for
the system
Claim: If we start out with a spin 1/2 particle, after the above processes,
we can end up with a spin 100 reading
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Definitions

Observable that will be weakly measured: Â |an〉 = an |an〉
Coupling of the measurement device to the observable: von Neumann
model
Ĥ = −g(t)q̂Â
where

g(t) is a function with compact support near the time of
measurement and normalised

q̂ is the canonical variable of the measuring device and p̂ is its
conjugate momentum
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More Definitions...

Initial state of the system: |Ψin〉 =
∑

n αn |an〉
Initial state of the measuring device: |Φin〉

|Φin〉 =

∫
dqφin(q) |q〉 (1)

|Φin〉 =

∫
dpφ̃in(p) |p〉 (2)

We will assume a gaussian spread in the p-representation centred at 0 with
a spread ∆p = 1/(2∆)⇒ φ̃in(p) = exp(−∆2p2)
Hence ∆q = ∆

φin(q) = exp(− q2

4∆2 )
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Evolution and Post Selection

Time evolution operator: exp(−i
∫

Ĥdt)

Assumption

During the time of measurement, the coupling Hamiltonian is assumed to
dominate all other terms in the full Hamiltonian

Time evolution of the system and the measuring device using this
Hamiltonian and post selecting to obtain: The final state of the device
|Φf 〉 = 〈Ψf |exp(−i

∫
Ĥdt)|Ψin〉 |Φin〉

After some math:

|Φf 〉 =
∑

n

αnα
′
n

∫
dpexp(−∆2(p − an)2) |p〉 (3)

A summation of gaussians centred at the eigenvalues of Â
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Ĥdt)

Assumption

During the time of measurement, the coupling Hamiltonian is assumed to
dominate all other terms in the full Hamiltonian

Time evolution of the system and the measuring device using this
Hamiltonian and post selecting to obtain: The final state of the device
|Φf 〉 = 〈Ψf |exp(−i

∫
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Srikrishnaa J (IISER K) Weak Measurement November 2019 13 / 47



Evolution and Post Selection

Time evolution operator: exp(−i
∫
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Post Selection - AAV Method

Define the weak value of A: Aw = 〈Ψf |Â|Ψin〉
〈Ψf |Ψin〉

Hence
|Φf 〉 = 〈Ψf |exp(iqÂ)|Ψin〉 |Φin〉

≈ 〈Ψf |1 + iqÂ + ...|Ψin〉 |Φin〉
= 〈Ψf |Ψin〉 [1 + iqAw + ...] |Φin〉

≈ 〈Ψf |Ψin〉
∫

dqe iqAw− q2

4∆2 |q〉
Finally,

|Φf 〉 ≈ 〈Ψf |Ψin〉
∫

dpe−∆2(p−Aw )2 |p〉 (4)

A single gaussian centred at Aw !
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≈ 〈Ψf |1 + iqÂ + ...|Ψin〉 |Φin〉
= 〈Ψf |Ψin〉 [1 + iqAw + ...] |Φin〉

≈ 〈Ψf |Ψin〉
∫

dqe iqAw− q2

4∆2 |q〉
Finally,

|Φf 〉 ≈ 〈Ψf |Ψin〉
∫

dpe−∆2(p−Aw )2 |p〉 (4)

A single gaussian centred at Aw !

Srikrishnaa J (IISER K) Weak Measurement November 2019 14 / 47



Post Selection - AAV Method

Define the weak value of A: Aw = 〈Ψf |Â|Ψin〉
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Post Selection - AAV Method

Hidden approximations!

|qn 〈Ψf |Ân|Ψin〉 ‖� |〈Ψf |Ψin〉 |, n ≥ 2

|qn 〈Ψf |Ân|Ψin〉 |� |q 〈Ψf |Ψin〉 |, n ≥ 2

|qAw |� 1

But q ↔ ∆. Hence

∆� minn=2,3,...| 〈Ψf |Â|Ψin〉
〈Ψf |Ân|Ψin〉

|1/n−1

∆� 1/Aw
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Weak Value

Two ways to find the weak value:

Repeat the single particle experiment N times

Perform one measurement of an N particle ensemble

AN =
ΣAi

N

will have (N+1) equally spaced eigenvalues.
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Weak Value

Figure: Weak value of spin. Source: Vaidman ”Weak Measurement”
https://arxiv.org/abs/hep-th/9408154
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Weak Value

Figure: Weak value of spin of N particles. Source: Vaidman ”Weak
Measurement” https://arxiv.org/abs/hep-th/9408154
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Back to Stern Gerlach experiment

System: z-spin
Probe: z-momentum
Hamiltonian: Ĥ = −λg(t)ẑ σ̂z

|Ψin〉 = 1√
2

{
cosα/2 + sinα/2
cosα/2− sinα/2

}
|Ψf 〉 = 1√

2

{
1
1

}
Hence the weak value of spin is:
Aw = (λσz )w = λ tanα/2
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|Ψin〉 = 1√
2

{
cosα/2 + sinα/2
cosα/2− sinα/2

}
|Ψf 〉 = 1√

2

{
1
1

}

Hence the weak value of spin is:
Aw = (λσz )w = λ tanα/2

Srikrishnaa J (IISER K) Weak Measurement November 2019 19 / 47



Back to Stern Gerlach experiment

System: z-spin
Probe: z-momentum
Hamiltonian: Ĥ = −λg(t)ẑ σ̂z
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Playing with validity

Condition to be valid for AAV’s approximation:
∆� λ−1min[tanα/2, cotα/2]
Hence α must not go too close to π but it can be taken arbitrarily close to
π so as to measure a spin value of 100
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The Setup

Figure: Optical version of weak measurement (Source: Ritchie et al. Phys. Rev.
Lett. (1990)
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The Math

First polarization:

~Ei = E0G (x)G (y)(cosαx̂ + sinαŷ)

where G (x) denotes gaussian in x centred at 0 with an FWHM of ∆

Angle made by the birefringent plate w.r.t. the y axis = θ

Relative lateral displacement between o and e rays = a = a(θ)

Phase difference between o and e rays = φ

Electric field now:

~Ew = E0G (x)[cosαG (y + a)e iφx̂ + sinαG (y)ŷ ]

Post selection by another polarizer:

~Ef = E0G (x)[cosα cosβG (y + a)e iφ + sinα sinβG (y)](cosβx̂ + sinβŷ)
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Post selection by another polarizer:

~Ef = E0G (x)[cosα cosβG (y + a)e iφ + sinα sinβG (y)](cosβx̂ + sinβŷ)
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Srikrishnaa J (IISER K) Weak Measurement November 2019 23 / 47



The Math

First polarization:

~Ei = E0G (x)G (y)(cosαx̂ + sinαŷ)
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The Math

Intensity detected at the end is proportional to the square of the electric
field at x = 0

I (y) = I0[cos2 α cos2 βG 2(y + a) + sin2 α sin2 βG 2(y)

+ 2 cosφ cosα cosβ sinα sinβG (y)G (y + a)]

where I0 is proportional to |E0|2
Set α = π/4

β = α ⇒ constructive superposition; single, unshifted Gaussian

β = α + π/2 + ε; (ε� 1) ⇒ destructive interference. Weak value
Aw ≈ a cot(ε)/2
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Results

Figure: Intensity in the detector as a function of y when a = 0.64µm and
∆ ≈ 55µm (Source: Ritchie et al. Phys. Rev. Lett. (1990))
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So far

Aw is a complex number in general.

What we obtain by repeated measurement here is only the real value of
Aw .
Imaginary of Aw :

Shifts the momentum operator of the probe system.

Determines the probability of post selection.

The imaginary component does not affect the weak value nor the average
quantities.
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Results from Kedem’s paper

Observable: C
Uncertainity in Q = ∆
Perform the measurement N times and the standard deviation of Q =
∆/
√

2
Signal to noise ratio

R =
< Q >N

∆N
(5)

< Q >N= N < Q >= Nc and
∆N =

√
N∆

Hence,

R =
√

N
c

∆
(6)
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Results from Kedem’s paper

Let the system: |Ψ〉 → |Φ〉
In the AAV regime, c << ∆ and < Q >Φ= Re(Cw ), hence

R =
√

NΦ
Re(Cw )

∆
(7)

where NΦ = N|〈Φ|Ψ〉|2
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If measured in the P basis, according to Jozsa’s paper,
< P >Φ= ∆−2Im(Cw )
Standard deviation of P = 1/

√
2∆

Hence the SNR is:

R =
√

NΦ
Im(Cw )

∆
(8)

Hence if Re(Cw ) = Im(Cw ) then R in both cases would be the same.

Srikrishnaa J (IISER K) Weak Measurement November 2019 30 / 47



If measured in the P basis, according to Jozsa’s paper,
< P >Φ= ∆−2Im(Cw )
Standard deviation of P = 1/

√
2∆

Hence the SNR is:

R =
√

NΦ
Im(Cw )

∆
(8)

Hence if Re(Cw ) = Im(Cw ) then R in both cases would be the same.

Srikrishnaa J (IISER K) Weak Measurement November 2019 30 / 47



Kedem’s results

What if the measuring device/probe is imperfect?
Suppose the probe is shifted to Q0 (a gaussian random variable with mean
0 and deviation ∆Q) instead of zero in the Q basis.

< Q >Φ = Q0 + Re(Cw )

< Q2 >Φ = ∆2

2 + (Q0 + Re(Cw ))2 (9)

Now average the above w.r.t. Q0:

< Q >Φ = Re(Cw )

< Q2 >Φ = ∆2

2 +
∆2

Q

2 + Re(Cw )2
(10)

Hence, SNR will have the same shift but with larger deviation.
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Kedem’s results

We consider a gaussian random variable in the P basis - P0 with mean
zero and deviation ∆P we obtain:

< P >Φ = P0 + ∆−2Im(Cw )

< P2 >Φ = ∆−2

2 + (P0 + ∆−2Im(Cw ))2 (11)

But there is a twist in the tale!
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Kedem’s results

After weak measurement, the imaginary part of the weak value is
responsible for the shift in momentum of the probe!
Therefore, after weak measurement, the peak of P0 distribution will be
shifted by ∆2

P Im(Cw ).

< P >Φ = (∆−2 + ∆2
P)Im(Cw )

< P2 >Φ = ∆−2

2 +
∆2

P
2 + ((∆2

P + ∆−2)Im(Cw ))2
(12)

This yields an SNR,

R =
√

NΦIm(Cw )
√

∆−2 + ∆2
P (13)

In this case, both the signal value and the deviation have changed.
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Mixed Probe State

Time evolution operator: U(θ) = exp(−iθA⊗ K )
Effectively, Ueff (θ) = exp(−iθAw K )
Probe: σi → σf = P(f /i)Ueff (θ)σi Ueff †(θ)

Expectation value: < M >i/f =
tr(σi/f M)

tr(σi/f )

Shift operators: δi/f M = M− < M >i/f
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Josza’s result

< δi M >f = iθRe(Aw ) < [K ,M] >i +θIm(Aw ) < {δi K , δi M} >i +O(θ2)
(14)

Put M = K, we get

< δi K >f = 2θIm(Aw ) < (δi K )2 >i +O(θ2) (15)

By measuring K, we obtain information regarding just the imaginary part
of the weak value.
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SNR

SNR here is given by:

R =
Ntr(σf ) < δi K >f√
Ntr(σf ) < (δf K )2 >f

(16)

< (δf K )2 >f =< (δi K )2 >i +O(θ) and
tr(σf ) = P(f /i) + O(θ)
Therefore, we get the SNR as:

R = 2θIm(Aw )
√

Nf < (δi K )2 >i + O(θ2) (17)

Compare this SNR to the SNR obtained when the instrument was perfect,

R =
√

NΦ
Im(Cw )

∆
(8 revisited)

where ∆ was the deviation for Q.
Initial standard deviation of shift in K is maintained! Completely mixed
state will have maximum standard deviation and hence the greatest SNR!
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Noise tolerance

Figure: Setup for weak measurement with mixed probe states. Noise is introduced
before and after probing. http://arxiv.org/abs/1211.4292v1

The result of the weak measurement is unaffected by the introduction of
the phase noises.
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Setup

Figure: http://arxiv.org/abs/1211.4292v1
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Setup

Initial state after the quartz plate: |ψi 〉 = 1√
2

(|0〉+ |1〉)
where |0〉 and |1〉 are the upper and lower paths of light.
Post selection just before the QWP where the upper and lower paths
interfere.
Path difference provided by the piezo electric stage.
Post selected state: |ψf 〉 = 1√

2
(|0〉+ e iδ |1〉)
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Weak Interaction

The relative angle between the two HWP in each arm (θ) serves as the
strength of interaction parameter.
Let UHWP denote the evolution caused by the HWP.
Then for the whole system,

U(θ) = |0〉 〈0| ⊗ UHWP(θ) + |1〉 〈1| ⊗ UHWP(0)

= UHWP(0)[|0〉 〈0| ⊗ exp(2iθZ ) + |1〉 〈1| ⊗ I ]
(18)

Z is some observable that distinguishes the two circular polarizations.
Hence the effective evolution is: U(θ) = exp(2iθP0Z ) where P0 is the
projection (to |0〉 〈0|) operator.
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Correlation

Now we can just substitute values back into the equations we derived by
putting P0 as A and Z as K .
From the weak value formula, we obtain

Im(< P0 >w ) =
1

2
tan(δ/2) (19)

tr(σf (θ)) = 1
2 (1 + cos δ cos 2θ)

tr(σf (θ)Z ) = −1
2 sin δ sin 2θ

(20)

Using these values,

Im(< P0 >w ) = −1

4

d

dθ

∣∣∣∣
θ=0

tr(σf (θ)Z )

tr(σf (θ))
(21)

This is experimentally obtained by plotting and finding the slope near
θ = 0
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Visibility

Post selection is not complete, which affects the weak value.
Actual post selected state: ρf

In the case of no interaction: ρf = V |ψ〉 〈ψ|+ (1− V ) I
2

where V is the visibility.
Hence the new weak value in terms of V:

Im(< P0 >w ) =
V sin δ

2(1 + V cos δ)
(22)

when V = 1, we get back the original case.
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Results

Figure: http://arxiv.org/abs/1211.4292v1
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Thank you!
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