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1 Introduction

Looks like electromagnetic potentials are not required since they are gauge in-
variant anyway and they may not carry any physical meaning. Fundamental
equations of motions are expressed in terms of fields alone. But we are wrong.

2 Experiment

Faraday cage with time varying potential V (t) due to an external generator.
Hamiltonian H = H0 + V (t) where H0 is the Hamiltonian of the system when
the generator is not working. If ψ0 is the eigenfunction of the Hamiltonian H0

then the eigenfunction of H is: ψ = ψ0e
−iS/h̄ where S =

∫
V (t)dt. This follows

from a simple calculation:

ih̄
∂ψ

∂t
= e−iS/h̄[ih̄

∂ψ0

∂t
+ ψ0

∂S

∂t
] = [H0 + V (t)]ψ = Hψ (1)

The difference is just a phase factor.
Now let’s go for a more complex experiment. Suppose there is a coherent

beam of electrons that is split into two beams. Each path consists of a long
cylindrical metal tube through with the electron beam must enter. The electron
beams are made to coherently interfere at the other end of the tube. Instead
of sending a continuous electron beam, we have electrical shutters, that allows
electron beam to pass as pulses or more like a wave-packet. The wave-packet is
large compared to the Debye wavelength λ but short compared to the dimensions
of the cylindrical tube.
The potential in each tube is in such a way that in region 1, the potential is

zero until the electron beam is well within the tube. In region 2, the potential
rises (although differently in each tube) and then falls back to zero in region 3
(near the edge of the tube). The aim of this set up is so that the electron passes
through a time varying potential where there is no field (around the middle of
the conducting cylindrical tube).
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Figure 1: Schematic experiment to determine interference of time dependent
scalar potential. A,B,C,D,E are devices used to split/divert beams, F is the
interference point. W1,W2 are wave-packets. M1,M2 are cylindrical metal
tubes.

Now if we take the eigenfunction of the total Hamiltonian of this system
(considering ψ0

1 and ψ0
2 to be eigenfunctions when the generator of the time-

varying potential is not working)

ψ = ψ1 + ψ2 (2)

Since this problem is quite similar to the first one with the Faraday cage, it is
not surprising that the answer is similar.

ψ = ψ0
1e
−iS1/h̄ + ψ0

2e
−iS2/h̄ = (ψ0

1e
−i(S1−S2)/h̄ + ψ0

2)e−iS2/h̄ (3)

where, S1 =
∫
V1(t)dt = e

∫
φ1dt and S2 = e

∫
φ2dt

From this, we can conclude that the interference that takes place at the point
F depends on the phase difference: (S1 − S2)/h̄. Hence we are able to see a
physical effect nothing to do with field and everything to do with potential.
Let us take relativity into account. The 4-potential is expressed as:

Aµ = (φ, ~A)

where ~A is the vector potential. Since the eigenfunction above is covariant, we
can look for similar results using the vector potential.
The phase difference can be expressed as a closed integral as follows:

e

h̄

∮
(φdt−

~A · ~dx
c

) (4)
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where the path of integration is over any closed loop in space-time.
Now let us consider a path in space only. In that case, the equation above
suggests that the phase difference depends on the vector potential. The phase
difference now is:

4S
h̄

= − e

ch̄

∮
~A · ~dx (5)

But the value of the closed integral is equal to the total magnetic flux inside the
circuit (Φ)

Figure 2: Schematic experiment to demonstrate interference with time-
dependent vector potential.

Let us now try to find an experimental situation which will correspond to this
situation. If we place a closely wound cylindrical solenoid of radius R centered
at the origin and axis in the z direction, we create a magnetic field ( ~H) which is

essentially concentrated within the solenoid. However the vector potential ( ~A)
cannot be zero everywhere outside the solenoid because the total flux through
every circuit containing the origin is equal to a constant.

Φ0 =

∫
~H · ~ds =

∮
~A · ~dx (6)

As shown in the figure, we have a beam of electrons (this time no wave packets
required). The beam is split into two parts, each going on opposing sides of the
solenoid kept at the center but avoiding it. The solenoid can be shielded from
the beam by keeping a thin metal plate which casts a shadow. The beams are
made to interfere again at F.
The Hamiltonian is given by:

H =
[~P − (e/c) ~A]2

2m
(7)
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The equation ~H = ∇× ~A works for singly connected regions and one can obtain
a solution by taking ψ = ψ0e

iS/h̄, where ψ0 is the solution when ~A = 0. But in
the experiment discussed above, we have a multiply connected region as shown
below. Hence ψ as given above is a non-single valued function and therefore

Figure 3: Region outside the solenoid where we are trying to find the solution
to the Hamiltonian

not a permissible solution to the Schodinger’s equation. But nonetheless, we
can split the above region into two singly connected upper and lower regions
and find individual solutions for the top (ψ1, S1) and bottom (ψ2, S2) beams
and find the phase difference between the two beams in that way. The phase
difference is given by

(S1 − S2)/h̄ = e/(h̄c)

∮
~A · ~dx = (e/h̄c)Φ0 (8)

This effect persists even though there is no magnetic field in the regions where
the beams pass. The result will not be changed even if we surround the solenoid
by a potential barrier that reflects the electrons perfectly.
The effect of the vector potential is to produce a shift in the relative phase of
the wave function. When the experiment is carried out practically, one observes
an interference pattern when the solenoid is turned on or off, since the electron
beams interfere either way. Instead, we have to slowly increase the total mag-
netic flux from zero in order to see the shift in the interference pattern at F.
This result would verify the predicted phenomena.
When the magnetic flux is altered, there will be an induced electric field outside
the solenoid as predicted by Lenz’s law. But these effects can be made negligible
since the effect only exists for a very short period of time such that only a small
part of the beam would be affected by it.
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3 Exact Solution

Aharonov and Bohm, in their paper, find the exact solution to the problem of
scattering of an electron beam by a magnetic field in the limit where the mag-
netic field region tends to zero radius, while the total flux remains fixed. This
corresponds to the setup in the second case of the experiment described above
but the region of space is not split into two parts instead, the problem is dealt
with in a multiply connected region.
Briefly, the method of solving consists of expressing the wave equation in cylin-
drical polar coordinates and solving for it. The wave equation in cylindrical
polar coordinates is:

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
(
∂

∂θ
+ iα)2 + k2]ψ = 0 (9)

where ~k is the wave vector of the incident particle and α = − eφch choosing the
gauge in which Ar = 0 and Aθ = Φ/2πr
The solution takes the form of an infinite sum of Bessel functions with coeffi-
cients that one needs to find using boundary conditions and the constant flux
condition. The final answer comes out as:

ψ → e−i(αθ+r
′cosθ) +

eir
′

(2πir′)1/2
sinπα

e−iθ/2

cos(θ/2)
(10)

At the line θ = π, this solution would show that the second term would com-
bine with the first to make a single-valued wave function despite the non-single
valued character of the two parts, in the neighbourhood of θ = π.
In the experiment described above, the diffraction effects by the scattering wave
have been neglected which is represented by the second term of the above so-
lution. Here, we see that the phase of the wave function has a different value
depending on whether we approach the line θ = ±π from the positive or nega-
tive angles (i.e. from the upper or the lower side). This confirms the conclusions
from the approximate treatement as given in the previous section.

4 Significance of the Result

From the above experiment and the calculation from the paper, one can con-
clude that in a field-free multiply connected region, the physical properties of
the system depend on potentials which depend on the invariant quantity which
is the total flux (Φ).
It is true that, total flux can be expressed in terms of the magnetic field inside
the circuit. However, according to relativistic notions, fields act only locally
and since electrons cannot reach the regions in which the fields are acting, we
cannot attribute the change in phase due to the fields themselves.
In classical mechanics, one can describe the equations of motion in terms of field
variables and hence potentials were thought of as mathematical tools with no
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physical meaning and fields are the ones that give us values that have physical
meaning.
In quantum mechanics, we deal with Schrodinger’s equation which includes both
field and potentials. The Lorentz force on a particle is derived from a classical
approximation and appears nowhere in the fundamental theory. Hence one may
lean toward concluding that potentials are fundamental in quantum theory and
fields are derived by differentiating them.
But Gauge invariance tells us that if the potentials are subjected to a trans-
formation by a gradient of a scalar continuous function, then all the physical
quantities are left unchanged. Hence the same physical behaviour is obtained by
two different potentials related by a gradient. Therefore, it was concluded that
potentials cannot have any physical meaning and are only used as mathematical
tools to calculate the fields.
The above treatment and results, suggest that a new non-local theory must be
formulated, or there must be a new way to define and interpret potentials i.e.
potentials must be attributed to having some physical meaning since they bring
about a change in physical observation when there is no field present. Therefore,
we must be able to differentiate between two quantum systems with potentials
that differ by a gauge transformation.
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